
[Tyag, 3.(11.): November, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

 [211]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY

Modifying SHA-512 using Padding, Tree structure and Permutation Boxes
Sumita Tyagi

* Computer Science & Engg., Babu Banarsi Das Institute of Technology, India

Abstract
In this age of technology internet has become a day to day necessity. With this growing usage of web data it has

become very important to design some secure way to save this web data from various types of attacks. One of the

ways to resolve this problem is hashing. Hashing takes variable length input and converts it into a fixed length

output using various hash algorithms like MD4, MD5 and SHA. Despite of all these advances in the field of hashing

these algorithms still have some weaknesses and many attacks on these algorithms have been discovered. In this

paper we propose a new way of hashing applied to the traditional algorithms. The basic concept is same but we have

modified the few steps involved in the process. We combine padding using SALT, tree structure and permutation

boxes applied together in these algorithms. This helps to provide an output that is more secure and complicated

making it more resistant to various collision attacks. Possibility of collision attacks, rainbow table attacks and

birthday attacks is also mitigated by the complex structure of the algorithm.

Keywords: SALT, Permutation Boxes, Rainbow Table Attack, Tree Structure

 Introduction
The secure hash function algorithm (SHA) was

developed by the national institute of standard and

technology (NIST) in 1993. SHA-1 produces a hash

value of 160 bits [5]. In 2002 , NIST produced a

revised version of the standard , FIPS 180-2 , that

defined three new versions of SHA , with hash value

length of 256 , 384 , 512 bits known as SHA-256 ,

SHA-384 , SHA-512 . These new versions have the

same underlying structure and use the same types of

modular arithmetic and logical binary operation as

SHA-1. Actually a cryptography hash function is a

procedure that takes an arbitrary block of data and

returns a fixed–size bit string known as hash value,

such that an accidental or intentional change to the

data will change the hash value. The data to be

encoded is often called the “message”, and the hash

value is sometimes called the message digest or

simply digests. In 2005, NIST announced the

intention to phase out approval of SHA-1 as it was

prone to many attacks [7] and move to a reliable

SHA version of 2010. There and then SHA-512 came

into picture and is being widely used. Still SHA-512

also had some drawbacks and in meantime various

attacks had been discovered on SHA-512. Many

modifications to SHA 512 have also been made to

make it more secure [3] [8].

Properties of hash function

1 These hash functions can be applied to any size

data producing a fixed-length output.

2 Hash functions H(x) are relatively easy to

compute for any given message x

3 Follows one-way property where it is

computationally infeasible to find x such that

H(x) = h

4 Have weak collision resistance where it is

computationally infeasible to find y ≠ x such that

H(y) = H(x)

5 Hash functions are strong collision resistance

computationally infeasible to find any pair (x, y)

such that H(x) = H(y)

Algorithms at a glance

SHA-1

SHA was designed by NIST & NSA in 1993, revised

in 1995. It produces 160-bit hash value. SHA 1 was

based on the design of MD4 with key differences. It

pads the message so that its length is congruent to

448 mod 512 by appending a 64-bit length value to

http://www.ijesrt.com/

[Tyag, 3.(11.): November, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

 [212]

the message. Then initialize 5-word (160-bit) buffer

(A,B,C,D,E) to

(67452301,efcdab89,98badcfe,10325476,c3d2e1f0) .

After this process the message in 16-word (512-bit)

chunks: expand 16 words into 80 words by mixing &

shifting, use 4 rounds of 20 bit operations on message

block, buffer and finally add output to the input in

order to form new buffer value. The output hash

value is the final buffer value

SHA 512

1. Append the bits with padding: The original

message to be hashed is padded with binary digits of

1 and 0’s so that its length becomes congruent to 896

modulo 1024 [length mod 1024 = 896). The padding

is usually 1 followed by many 0’s.

Figure 1. General Structure of SHA 512

2. Append length. A block of 128 bits is appended

to the message. This block is treated as an unsigned

128-bit integer (most significant byte first) and

contains the length of the original message (before

the padding)

3. Initialize buffer. A 512-bit buffer is used to

hold intermediate and final results of the hash

function.

4. Process message in 512-bit (16-word) blocks.

The heart of the algorithm is a module that consists

of 80 rounds of processing. The 80 rounds have the

same structure, but vary some constants and logical

functions.

5. Output. After all N 1024-bit blocks have been

processed; the output from the nth stage is the 512-bit

message digest.

Figure 2. Single Round function of SHA 512

In this algorithm the result of the previous stage is

added on to the next stage till the nth block of

message is reached. As the new result depends on the

previous result it increases the complexity of this

algorithm.

http://www.ijesrt.com/

[Tyag, 3.(11.): November, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

 [213]

Figure 3. SHA 512 Compression Function

Proposed algorithm
SHA 512 is also prone to much different type of

attacks [2] amongst which common ones are Birthday

attack [4] and Rainbow Table Attack. We have

modified the SHA 512 structure by using the concept

of iterative hashing [1], extra random padding and

permutation boxes. We implement the iterative

hashing by using a tree like structure as shown in

Figure 4. It differs from original structure of cascade

at single level by using tree structure. In this nodes at

first level are same as in previous algorithm but at

subsequent levels these are half than that at previous

level. So a tree structure is formed that decreases

down the levels. This tree structure ensures security

at multiple levels, thus increasing the complexity and

decreasing the chances of collision.

Figure 4. Tree Structure of SHA 512

The modified algorithm consists of the following

steps:

1. Append padding bits:

While modifying SHA 512 we pad original message

with salt which is variable and randomly decided by

sender.

Figure 5. Adding Salt to Original SHA 512

Number of salt bits depends upon original message

so as to make its total length, a multiple of 1024 bits.

SALT is just an additional string appended to the

password before it is being hashed and stored into the

database table. The same exact SALT will be

required during verification between the user entered

password and stored password. SALTS are resistant

to rainbow table and brute force attacks.

http://www.ijesrt.com/

[Tyag, 3.(11.): November, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

 [214]

2. Append length: A block of 128 bits is appended

to the message. This block is treated as an unsigned

128 bit integer. The outcome of first two steps yields

a message that is an integer multiple of 1024 bits in

length.

3. Initialize the buffer: A 512- bit buffer is used to

hold intermediate and final result of the hash

function. the buffer can be represented as 64- bit

registers(a,b,c,d,e,f,g,h)

a=6A09E667F3BCC908

e=510E527FADE682D1

b=BB67AE8584CAA73B

f=9B05688C2B3E6C1F

c=3C6EF372FE94F82B

g=1F83D9ABFB41BD6B

d=A54FF53A5F1D36F1

h=5BE0CD19137E2179

These words were obtained by taking the first 64 bit

of fractional parts of square roots of first 8 prime

numbers.

4. Process message in 1024bit blocks: The

algorithm consists of 80 rounds, after every 20

rounds permutation of registers take place.

Permutation after every 20 rounds depicts the use of

switch functions which is a concept adapted from

DES and thus will increase the security of SHA 512.

Each round makes use of a 64 bit value Wt, derived

from current 1024 bit block being processed(Mi),

each round also makes use of an additive constant Kt.

These words represent the first 64 bits of the

fractional parts of the cube root of the first eighty

prime numbers. Output of 80th round is added to the

input to first round (Hi-1) to produce Hi, addition is

done independently for each of the eight words in the

buffer with each of the corresponding words in Hi-1,

using addition modulo 264.

Figure 6. Modified Compression Function of SHA 512

5. Output: After all N 1024 bit blocks have been

processed the output from the stage is combined

together so as to act as input to the next stage which

proceed as the previous one. These results in single

512 bit message digest at the end of the tree.

Results and discussion
The algorithm proposed in this paper makes use of

the salt function which is added to the passwords

before these are hashed. This makes the hash function

generated to be resistant to any kind of rainbow table

attack or brute force attack or the collision attacks

[7]. After this we have permuted the output obtained

after every 20 round using permutation boxes same

as in DES. By using P Boxes the output obtained

from the various blocks of input becomes more

complicated and changing a single bit of input

changes many bits in output hash function thus

making it again collision resistant. Finally a tree

structure is formed by combining various 512 block

output and iteratively adding these to next block of

http://www.ijesrt.com/

[Tyag, 3.(11.): November, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

 [215]

input. This result in forming only a single 512 bit

output as a hash function. As many times iterative

hashing is done this provide more security to SHA

512 algorithm.

Conclusion
There are many new and recent designs developed in

hash algorithms [6] [8]. Amongst all the hash

algorithms developed SHA 512 is a more secure

algorithm. We have introduced three concepts in the

design of SHA 512 by adding SALT, Tree structure

and Permutation Boxes. These three changes to

already existing SHA 512 makes it more complex

and secure and prevents it from many attacks

theoretical as well as practical that have been

discovered on SHA 512.

References
1. E. Biham O. Dunkelman “ A framework for

Iterative Hash functions” Proceeding second

NIST workshop2006, Santa Barbara, USA,

August 2006.

2. Marc Martinus Jacobus Stevens “attacks on

hash functions and application”Centrum

Wiskunde & Informatica March 2010.

3. Mohammad Abu Taha, Mousa Farajallah,

Radwan Tahboub: A Practical One Way

Hash Algorithm based on Matrix

Multiplication, International Journal of

Computer Applications (0975 –

8887)Volume 23– No.2, June 2011

4. Erika Batista, Gaël Canal, Karim Ziadeh:

The Birthday paradox Operational Research

and Optimization, December 2012.

5. Dai Zubin,Zhou Ning:FPGA

Implementation of SHA-1 Algorithm,IEEE-

2003,pp 971-975.

6. Rajeev Sobti, G. Geetha “Cryptographic

Hash Functions: A Review” IJCSI, Volume

9, issue 2, March 2012, ISSN (online) :

1694-0814

7. X. Wang, Y.L. Yin, H. Yu, “Finding

collisions in the full SHA-1,” Advances in

Cryptology, Proceedings Crypto’05, LNCS

3621, V. Shoup, Ed., Springer-Verlag, 2005,

pp. 1–16.

8. S.Al Kuwari, J.H. Davenport, R.J. Bradford.

Cryptographic Hash Functions: Recent

Design Trends and Security Notations. In

short paper proceedings of Inscrypt’10.

Science Press of China, 2010, pp- 133-150.

Author Biblography

Sumita Tyagi

Sumita Tyagi has received her

B.Tech Degree in Information

Technology from Ideal Institute of

Technology in the year 2006 and her

MBA in HR and IT from IMT in the

year 2009. Currently working as

Asst. Prof. in BBDIT, Ghaziabad

and has more than 7 yrs of

experience in field of academics.

She has authored a book on

“Cryptography & Network

Security”. Areas of interest include

Cryptography, Algorithms and

Programming.

 Email: sumita.tyagi12@gmail.com

http://www.ijesrt.com/

